Goal of the Subject

The”goal of this book is to provide all Important concepts of operating systems such as

Processes and Threads, Mutual Exclusion, CPU Scheduling, Deadlock. Memory
Management, Virtual Memory and File Systems.

Understand the purpose of the operating system

Distinguish between a resource, a program, and a process
* Solutions of semaphores

Describe various memory page replacement algorithms
Describe how files are stored in secondary storage

Operating System

INTRODUCTION

* i | uter and the
An operating system is a program that acts as an intermediary between a user of a comp

ime, memory)
computer hardware. Two primary aims of an operating systems are to manage resourCes (e.q. C PU tim t Ues'ior:s
and to control users and software. The book consists of topic wise Examples and Student Assignment QUESL

which test the important concepts from the lesson and nrovide practice problems. This subject includes the
following chapters.

1. Basic Concepts of OS: In this chapter we discuss Basic Concepts of OS, Types of Operating System,
Dual Mode Operations and System Call.

- 2. Processes and Threads: In this chapter we discuss Process, O perations on a Process, Scheduling,
Thread and Co-operating Processes (Inter Process Communication).

3. CPU Scheduling: In this chapter we discuss Goals of CPU Scheduling and Scheduling Algo.

4. Process Synchronization: In this chapter we discuss Synchronizatidn. Critical-Section Problem,
Synchronization Techniques, Semaphores and Classical Problems of Synchronization with Semaphore
Solution. _

5. Deadlock and Concurrency: In this chapter we discuss Concurrency, Deadlock, Conditions for a

- deadlock, Methods of Handling Deadlocks, Prevention, Avaidance and Detection & Recovery. -

6. Memory Management: In this chapter we discuss Logical (Virtual) Vs Physical Address Space,)

Jdemory
Allocation Techniques, Internal Fragmentation and External Fragmentation, Paging, Ségmentation,_'
~Segmented Paging and Buddy System.

and Frame Allocation.

and Free Space Management.

9. 10 System: Inthis chapter we discuss /O System Structure, M

. agnetic Storage Devices, Disk Schedulin
ana Disk Scheduling Algorithms. ‘ g

- CHAPTER [l

' Basic Concepts of OS

1.1 Operating System (0S)

Itis a program that acts as an interface between a user (applications) and the computer hardware.

User
- User

1.2 Structure of Computer System

A computer system consists of :
* Users: People, other computers, machines, etc.

User End
* Application programs: Compilers, database —
- Systems, video games, business applications,
web-browsers, etc.

System
* System programs: Shells, editors, compilers, —
development tools, efc.

* Operating System: Itis a system program which

~.controls and coordinates the use of hardware
among application programs.

* Hardware: CPU, Disk Memory, I/O devices, eic. CPU, Memo

Physical device
ry, /0 dgyices, New Interfaces

: mnDE E ‘-l % ~--;.l' :d‘r}*?-" . '-"-'n'-.‘;_"""‘;""1'.-1?:':-L.:!:'r.:'t‘!:-r':'*f;.;f'nﬁ.
'""“""""““""“‘“E'“EE Theory with Solved Examples: F&>

‘w -rrl A Hq-'ll

‘:.1 l‘.'l. e 1-.
sty od

O
postal Study Course FIIE] == men

dable. It loads the

| Computer Science & IT

ip but upgra
NOTE: Firmware (BIOS) is a software which is permanently stored on chip
operaling system during the boot.

1.3 Layered View of Operating System Services

. d and presents a virtual
1. UserView: The OSis an interface, hides the details which must be performe

machine to the user that makes easier to use.
OS provides the following services to the user.
() Execution of a program

(i) Accessto I/O devices

(iii) Controlled access to files

(iv) Error detection (Hardware failures, and software errors)

i~ ' ffer the services
-2 Hardware View: The operating system manages the resources efficiently in orderto o
to the user programs.

OS acts as resources managers:

(/) Allocation of resources (ii) Controlling the execution of a program

(iify Controls the operations of I/O devices (i) Protection of resources
(v) Monitors the data

instructions that are executed by the processor.

OS actsasa program to perform the following:
() Hardware upgrades

(iii) Fixes the issues of resources
Goals of operating system:

3. System View: OS is a program that functions in the same way as _olther programs. lt IS a set*ofd

(iiy New services |
(iv) Controlsthe user and hardware operations
Primary goal is convienience and secondary goal is efficiency.

1.4 History of Operating System

Hardware can run one program at a time
* Numerical calculations

Transits based: -
* Highlevellanguages (Fortran) =~~~ =~ = -

* (Batch programing) (1955-1965)
IC Circuits based: |

* Timesharingand multiprogramming (1965-1980)
Business Applications, Scientific and Engineering Applications
Working and PCs:

* Real-time, Embedded. parallel, Network pro
Networking:

* Parallel Computer Architectures (2000-Present)
* High Speed Networks.

(Serial Processing) (194‘5-1955) o
gramming (1980-2000)

1.5 Types of Operating System
1. Serial OS

' 2. BatchOS |
3. Interactive OS 4. Multiprogrammeq_os -'
&3 Theory with Solved Examples [J MADE Ensy
- e PR a0 L LRI AT L DN i == hies Best

m&am&m

E uTEtEuE FTE.ETESG mHJ. Postal Study I 2018 "~ Operating System

o. Time sharing OS
7. Network OS

9. Distributed OS
11. Handheld OS

6. Real time OS
8. Parallel OS

10. Clustered OS

1.5.1 Simple Batch Systems

Automatic transfer of control
oystems allowed automatic Job sequencing by a resident operating from 1 job to another

System and greatly impr-Ewed the overall utilization of the compulter.
In batch system there is lack of interaction between the user and the
job while the job is executing.

The CPU utilization was still low; In this execution environment the CPU
s oftenidle. This idleness occurs because the speeds of the mechanical
Input/output devices are Intrinsically slower than those of electronic
devices. .. '

Batch system are appropriate for executing large jobs that need little
interaction. Example: IBM OS/2.

holds output for a device, such sa a printer, that cannot accept interleaved data streams.

Although a printer can serve only one job at a time, several applications)
may wish to print their output concurrently, without having their output mixed |

together. The operating system solves this problem by intercepting as output to
the printer. Each applications’ output is spooled to a separate disk file. II
il

Line Printer

e -
N ’
-

When an application finishes printing, the spooling system queue bické '
the next spooled-file for input to the printer.

~ The spooling system copies the queued spool files to the printer one at a _-' 4 —
time. Even in a simple system, the spooler may be reading the input of one job u
while printing the output of a different job. Spooling can keep both the CPU and

the input/output devices working at much higher rates.

Spooling Card Reader

1.5.2 Multi-Programmed Systems

* Several jobs are kept in main memory at the same lime and the
CPU is multiplexed among them, to increase CPU utilization.

' * Ajob pool on the c!jsk consists of & number of Jobs that are ready
to be executed. Subsets of these JObs reside in the memory for
! execution, |
* - Iheoperating system picks and executes one of the jobs in memory., - > .
L ulti-programming System
;@ﬁéﬁéﬁ,@iﬁ . MADE ERgyYy

=S mvmreavconem . Theory with Solved Examoics T

- MADE ERSY
| Computer Science & IT Postal Study Course EI:IE E rchas Best Insutuce T

- iting for the job
* When this job in execution needs an inputfoutput operation {0 compllel& Instead of wailing |
jobs waiting for CPU.

to complete the input/output, it switches o the subset of | . y
* Inanon multi programmed system the CPUwould sitidle. In multiprogramming system the operaling

system simple switches to and executes another job.
- | of them, then
* Ifseveral jobs are ready to be brought intomemory and there IS not enough room for all o

the system must choose among then. Making this decision is job scheduling.
Example: Windows and Unix.

1.5.3 Time Sharing System (Multitasking) -
* Time sharing or multitasking is a logical extension of multiprogramming. Multiple jobs are executed

by the CPU switching between them, but the switches occur is frequently that the users may interact
with each program while it is running.

* Aninteractive computer system provides direct communication between the user and the system.
The user gives instructions to the operating system or to a program directly and receives an immediate

response. |
* Atime shared operating system uses CPU scheduling and multiprogramming to provide each user

with a small portion of a time shared computer.

* Atime shared operating system allows the many users to share the
computer simultaneously. Since each action or command in a time
shared system tends to be short, only a litile CPU time is needed
for each user. As the system switches rapidly from one user to the
next, each user is given the impression that she has her own
computer, whereas actually one computer is being shared among

‘many users.

1.5.4 Real Time System - Multi-tasking System

Used when there are rigid time requirements on the operating of a processor or the flow of data Systems
that control scien}ific experiments, medical imaging systems, industrial control systems, and som'e displa
systems are real-time Systems. A real time operating system has well defined. fixed time conlstraints Processi .
must be done within the defined constraints or the system will fail. Examp!e:' RTOS | o

Types of Real Time Systems
1. Hard re:‘.-l time system: Guarantees that critical tasks completed on time. This goal requires that all
~delays in the system be bounded from the retrieval of stored data to the time that it takes the

operating system to finish any request made to it K
o . Kernel delays nee
restrictive. Example; Satelite, Missile System. ! @ to be bounded and more

2 Soft real time system: A less restrictive ty |
| : pe of real time system is a soft real t
o . o eal time s
cnt;c_al re‘al time ta.sk gets priority over other tasks, and retains that priority until it Zzleml. where a
éalime is an achievable goal that can be mixed with other types of systems Howevep ;tes-hSOfl
- rtney nave

more limited utility than do hard real time s | |
. ystem. Given their late | |
o use for industrial control and robotics. Example: Banking syste?:wdead“ne Trorney ate tely

POl DD d D LA E dal o G G 8 4

Postal Study Course 12018

One advantage of il

aing this kind of system is increased throughput. By Increasing the number of
Processors we

hope to get more work done in a shorter period of time.
Multipmcessors Can also save mone
POwer supplies. |f Several program

Ose data on one g
with

Operating System |

y because the processors can share peripherals, cabinets and

s are to operate on the same set of data, it is Cheaper to store

sk and to have all the processors share them. rather than to have many computers
local disks and many copies of the data.

Anolher advantage is Increased reliability.
* [Iffunctions can be dis

tributed properly among several processors, then the failure of one processor
will not halt the System, but rather will only slow it down.
* The ability t

© Continue providing service proportional to the level of surviving hardware is called
graceful de

gradation. Systems that are aesigned for graceful degradation also called fault-tolerant.
Symmetric Multiprocessing Model - -

these copies communicate

It a number of different sites are connected to one another then, a user at one site
may be able to use the resources available at another. o |
¢ Comput_ation speedup: If a particular computation can be partitioned into a number of
~ subcomputations that can run concurrently then a distributed system may allow us to distribute the
Computation among the various sites to run that com

putation concurrently. -
Reliability: If one site fails in a distributed System, the remaining silt can potentially continue operating.

onnected to one anothér by a communication network, the
portunity to exchange information.

Difference between Distributed OS and Network OS

Communication: When many sites are ¢
- processes at different sites have the op

1.5.7

Network Operating System Distributed Operating System

1. Each computer has its own OS

2. It allows interaction between the machines by

having a common communication architecture

J. Independent machines accessed by the user
&

1. Common OS shared by

a network of computers
2. Single OS controlling

the network

3. Dependent machines accassed by the user to
share the resources

1.6 Dual Mode Operations

A processor can support two modes of execution:

1. Kernel/Protected / Supervisor / System/Monitor / Privieged mode.
2. Usermode / Non-privileged mode

[EMADE EBSY heery with Solved B

————

ERS
Postal Study Course PINE] JPME LAttt rt

| Computer Science & IT

Operating system runs in Kernel mode and user programs run In user User ng?n o | Mode bt = 1
mode. Mode bit is used to decide the mode of operating system. |f mode bit (Non-privileg
is 0, it operates in kernel mode. Otherewise it operates in user mode when

Mode bit = 0
mode bit is 1. |

1.6.1 Kernel Mode
A process running in Kernel mode has following:

e Full access to machine instruction set.

e Direct access to hardware (memory, 1/O devices, etc).
OS and device drivers must run in Kernel mode. MS DOS only support Kernel mode._ t
Privileged instructions: Set timer, Clear memory, Disable interrupts, Access I/O devices, €lC.

1.6.2 User Mode
A process running in user mode has following:

e Access to the limited set of machine instructions.
* - Nodirect access to hardware.

* Hardware access is coordinated by OS.
Non-privileged instructions: Read clock, Generate trap, User to Kernel mode switch, etc.

' S Qv o <® P S
| "‘Pa:g\ ' O W @QQ% e
Web Browser oS ¢ Device ¢ Network Interface
www.madeeasy.in driver Card (NIC) N/W
User mode Kemel mode Kernel mode
S — e N
" USER < ~ 'SYSTEM | | - HARDWARE =

1.6.3 Privileged Instructions and Non-privileged Instructions

-~ |- Non-Privileged Instructions |

Reading system time
Reading the states of CPU
Sending the final printout of printer

* Privileged Instructions - ' -

Note: In boot time the system always start in kemel. The OS always run in kemel mode.

1.7 Functi'ohs of Operating System

|t controls all of compufer resources.
* It provides valuable services to user programs.
* ltcoordinates the execution of user programs.
* It provides resources to user programs.
* Itprovides an interface (virtual machine) to the user.
* It hides the complexity of software.

* It supports the multiple execution modes.
* It monitors the execution of user programs to prevent errors.

MRDE EASY

ndis's Bast natitute for €3 GATE & PSIM

X LT T LNl e o
‘@Y :Theory with Solved Examples
i 1 . . :) . ; > ;"""'-ih-'ﬂf:::ft1*I.T‘.';:;'b‘-;‘"_'l'._-_.Lpi'i‘-rl.

s

4. Device handling (I/O)
5. Pr otection

N 6. Networking, etc.
Types of System Calls

1. Process control: end, abort, create, terminate, allocate and free memory.

2. File management: create. open, close, delete, read file etc.
3. Device management

3 4. Information maintenance
| 5. Communication

1.10 Interrupts

There are two types of interrupts:

1. Interrupt: Interruptis a hardware generated which chan
Interrupt handler deals with hardware generated interrup
used to signal the completion of I/O.

¢ External event

* Asynchronous event

* Independentofthe currently executed process instructions.
Examples: Clock interrupt, 1/O interrupt and Memory fault.

L G L A = L, T
¥, J‘ Sl TR AT TR fo
' 1deeasy.in’

5 DA A e

- - - ' - i
T P,
i il -

-
L] L

SURASRY TR Tl Tyl
[] L I) e . “en "I.'-"i'
i ' with Solved Examples:
- o & # o q - i -Ii
"f-q'*'.;"', Iy s VRN $5 0% " 0 ens ik . i « et

-
I-1
B

. RDE ERSY
| Computer Science & IT Postal Study Course FXOE] MR =

2. Trap: Trap is a software generated signal either o call operating system routines or to catch the

arithmetic errors.

* Exceptions and system calls

* Synchronous event

* Internal (exceptions) events or external events.

1.11 Booting of OS

Hardware doesn’t know where the operating system resides and how to load it. Hence it needs a special
program to do this job i.e., Bootstrap loader. Example: BIOS (Boot Input Output System).

Bootstrap loader locates the kernel, loads it into main memory and starts its execution. in some systems,
a simple bootstrap loader fetches a more complex boot program from disk, which in turn loads the kernel.

Controllers on motherboard

. . This program is form of ROM, since RAM is in unknown state at s
as It needs no initialization and can't be affected by virus. l

* Run diagnostics to determine the state of machine If di '
- i1 d1Iagnostics pass, booting conti
* HunsaPower-On Self Test (POST) to check the devices that t o s

* BIOS goes through a preconfigured list of devices until it fin
such device, an error is given and the boot process stops.

Initializes CPU registers, device controllers and :
oS contents of the main memory. After this. it loads the

* Onfinding a bootable device, the BIOS loads and exe, '
| '~ , executes its boot sector.
arive, this is referred to as the Master Boot Record (MBR) and i or T ihe case of a hard

_ The MBB _code checks the partition table for an active partition. If
that partitions boot sector and executes it

The boot sector is often operating system specific
function is to load and execute a kernel

one is found, the MBR code loads

| however in most oberating systems its main)
which continues startup. | ‘

P W N DY PP oY Y Y yYYYYVYYyY YV VYV IFIFIVY.

L Theory with Solved Examples

——

Postal Study Course 1L Operating System |

.* It there

o 'S NO active partition or the active partition's boot sector is invalid, the MBR may load a
ndgry boot load and Pass control to it and this secondary boot loader will select a partition
(often via yser INput) and load its boot sector.

Examples of S€condary boot loaders:

(@) GRUB : GRand Unified Bootloader

(b) LILO : Linux LOader

(C) NTLDR :NT Loader
System such as cellular phones,

.

»

»

@

&

.

»

*

L Small OS, simple sy | |

. Pporting hardware, and rugged operation.

® 3 Changing bootstrap code would require changing ROM chips.
° EPROM : Erasable Programmable ROM
%
®
-
»
»
»
D
>
_
_
4
y
b
)

PDAs and game consoles stores entire OS on ROM. Done only for

1.12 Types of Kernel Designs

Monolithic Kernel

All OS services Operate in kernel space.
~ * Good performance.

. Dflsa:v)antages; Dep_endencies between system component. Complex and huge (millions(!) of lines
Of code). ~

Microkernel

* Minimalist approach

IF‘C, virtual memory, thread scheduling
* Puttherest into user space

Device drivers, networking, file system, user interface
* More stable with less services in kernel space

¢ Disadvantages: Lots of system calls and context switches.

Example: Mach, L4, AmigaOS, Minix, K42
Hybrid Kernel)

It combines the best of both worlds

* Speedand simple design of a monolithic kernel
* Modularity and stability of a microkernel
e Still similar to a monolithic kernel

Example: Windows NT, NetWare, BeOS

Exokernel
* Follows end-to-end principle
o * Extremely minimal
' * Fewesthardware abstractions as possible
* Just allocates physical resources to apps

e Disadvantages: More work for application developers. Example: Nemesis, ExOS

. '-fhs:.t'i-'i"‘?fﬁﬁ"i'j'ﬁf
MADE ERSY il i

E

=

;‘.} Srrare SN VAN I
Solved Examples’

;--I
Y

A o} ’
. ™ ¥ 8 Ll | "lrrrl -I-'J‘

-

| Computer Science & IT

Postal StUdy Course m Eg E!.‘.E.:E;E. m%ErﬁE,.

‘
Remember

',

Q.1 Inamultiprogramming and time-sharing environment, several users share the system
simultaneously. This.situation can result in various security problems.
(8) What are two such problems?

(b) Can we ensure the same degree of security in a time-shared machine as we
have in a dedicated machine? Explain your answer.

“Ans: (a) Stealing or copying one’s programs or data; using system resources (CPU,
memory, disk space, peripherals) without proper accounting.
(b) Probably not, since any protection scheme devised by humans can inevitably

. be broken by a human, and the more complex the scheme, the more difficult it is to
- feel confident of its correct implementation. |

~-Q.2- What is the main advantage of multiprogramming? |
Ans: Multiprogramming makes efficient use of the CPU by overlapping the demands for

the CPU and its I/O devices from various users. It attempts to increase CPU utilization
Dy always having something for the CPU to execute.

" Q.3 "Listthe steps that are necessaryto runa program on a completely dedicated machine.
Ans: (a) Reserve machine (b) Mar i | '

~undebugged user pr

ograms requires some hardware assistance. Name three-
hardware aids for writing an operating system.

hereitis needed ang is accessible 6nly

- bugs affecting that data must be i
to a specific module or layer. J - must be limited

Q.7 What are the main advanta

e g > ' T e A T e o2 Ty
o "';* 3. % ;ﬂ.."&‘f" ;lg,.i‘;’ A .‘ 1-‘}5’]5&“‘:‘?': - mnDE E"SH ; mﬁr RS ‘ar li h . '.--|.1 s : L el .,..l 1. r
BRI ey d 75 e F :1NCOTY W th So Ved_ E!ampesﬁ
‘ ,i ,’%‘ I .7 . ' = === rufig Bagg m.nM‘ m '-.;'-L“ p‘..:.‘-':'- TS !*_: P A A TR "":""'rl‘t:' . HA eVl

:’F..I-.:

- ———

Postal Study Coursem Operating System |

Multltasklng: Interaction between multiple processes on the same processor.

Mumprogrammlng: Interaction between multiple processes in the system. (either on
3ame processor or on different processor)

Concurrency Includes:

* Communication among processes/threads.
* Sharing System resources.

-+ % Cooperative processing of shared data.

; ¢ Synchronization of process/thread activiti'és.

% Organized CPU scheduling. o

* Solving deadlock and starvation problems.

Concurrency arises:

* Interaction between multiple processes running on one CPU.

¥ Interaction between multiple threads running in one process.

+ Interaction between multiple processors running multiple processes/threads.
Muiticomputing: Interaction between multiple computers running distributed

processes. L
D Student’ Q.5 When a computer is “swapping”, it is _
ﬁ As: ones t (a) moving data from hard drive to floppy drive
. snmen | (b) moving data from memory to the swap file
- ' the hard drive '
Q.1 The software that contains the core components - _ _ * o
of the Operating system is called P (C) moving data between rQQISterS In Memory
(d) None of the above
(@a) Controller - (b) Root I AR 3 S L0S g ratCul ol
(c) Kernel (d} None of the above Q.6 The Operating System is responsible for
Q.2 When a computer is switched on, where is the (@) controlling peripheral devices such as
' tina svsten loaded? | monitor, printers, disk drives
opormva sy | OM (b)provide an interface that allows users to
(@) BIOS (b) HAM - choose programs to run/manipulate files
(c) POST (d R . (c) manage users' fites on disk
Q.3 Onwhich chip is the BIOS program permanently (d) All of the above
e Q.7 Which of the following does an operating system
(a) RAM ' (b) ROM do in a stand-alone computer system?
(c) SIMBA (d) none of these (a) manages the user’s files
Q.4 Spooling helps because (b) provides the int_erface to allow the user to
(a) itis a more secure method of accessing data communicate with the computer
(b) print jobs go more smoothly with less stop (C) controls the various peripherals
and go (d) All of the above |
(c) the computer is released todootherthings o g .o s following is true about a terminal
while still printing on a time-sharing computer system?
(@) None of the above Lo

B Ay~ A0 "*.. 10 5T

2.1 Process

A process is an activity of executing a program. It is a program under
execution, Every process needs certain resources to complete its task.

There are two types ol processes:

1. User process: User processes are executed in user mode and user
processes can be preempted while executing.

2. System process: System processes are executed in privieged mode.
System process executed automatically without preemption.

Data

Heap

Code (Program)

Abstraction view of a process
Process information Every process has an image consists of three components.
ot | e OGS SO0 1. Executable program [code section)

2. Associated data needed by the program [data section]
3. Execution context of the process [context section]

2.1.1 Process Description

User Code and data section of a program are called as “user address space”.
::::” Context section of a process is managed by operating system which contains

stack and process control information.

2.1.2 Process Control Block (PCB)

A process cont ved i | |
proc ontext saved In particular block to control the process is called (Process identification)

as “Process Control Block". PCB is also called as task control block. Every process Numeric identifier
has a PCB that contains the following information. uiii“'SL,ﬁinl‘l“ZL.
1. Prdcess Identification Data (CPU state)
2. CPU state information User visible regisiers
' | Conlrol and status registers
3. Process control information Stack pointers, etc.
OS maintains a process to manage the processes by maintaining PCBof (Process control)
;| Scheduling, process state
every process as an entry of process table. information, links 1o other
process memory privileges, elc.
Process Control Block
Theory with-Solved Examples MADE ERSY = [G0@s
s s A L N R 4 == nda's Best hwtiuts for (£S5, GATE & PSUe

LUEI T I 2018 Operating System |

2.1.3 Process Switch (Context Switch)

i 1. Process switch: Process switch also called as context switch which involves saving the current CPU

information, updating the control information and restore the CPU information.
Process switch includes the following steps: |

| () Save CPU context [Mode switch from user mode to Kem.el mode using mode bit].
(ii) Update PCB of current process.

| (iii) Move PCB of current process to appropriate queue.
(v) Select another process for execution |By CPU scheduler].

! (v Update PCB of selected process.
r (vi) Update memory management structures.
(vii) Restore CPU context of new PCB [Mode switch from Kernel mode to user mode].
Process Switch / Context Switch

IR =N/ 1=

Mode switch Mode swilch

;

A 2. Context switch time is dependent on hardware and it is overhead because during context switch the
s system does not useful work.
y
b

2.2 Process State Models

Proces._s state defines the current activity of the process. Process states are: new, running, ready, blocked,
suspended (suspended ready, suspended blocked), etc.
'22.1 Types of Process State Models
| Number of process states are decided by the type of process state model.
1. Two state process model: |

)
:
!
)
i
g | Schedule/Dispatch

“[S MADE ERSY “Theory with Solved Examples: &

ma==: ndis® Beet Wnatitute kr IES, GATE & POUs

| Computer Sclence & IT

3. Six state process model:

— Admit
QNUW —

\

N
4
_Blocked / *,

)
%
v

2.2.2 Queues/ States Description

-# New: For every new process, first PCB is created and added to a “new" queue.

* Ready: When a process is ready, the program and data are loaded, and PCB of that process keptin
"Ready” queue. The process is available for execution and available in main memory.

* Blocked: The process is in main memory awaiting an event will be in block
the process enters into "Ready” queue.

* Running: The process currently executing
at any time. |

* Suspended blocked: The processis in secondary memory and awailing an event will be in suspended
blocked. The process in “Blocked" will move 1o "Suspended blocked" due to many reasons such as
blocked process might be consuming more memory:,

* Suspended ready: The process s in the secondary memory but s available for execution whenever
Itis loaded into memory. The process moved from “Ready” queue to *

due to more priority for other processes and several reasons are exi
Exit: A process which completed its execution will be terminated Dy

- - & '
N S s - aliaiain

.. o TEDCE. "-

ed. When event OCCurs,

IS in running state atmost one process is in running state

st.
Swapping out.

Operating System ‘

2.23 Active and Inactive Jobs

* Ready

* Running '
* Blocked

The following Processes (inactive) are in secondary memory.

* New

* Suspended blocked

* Suspended ready
* Exit

2.24 Actions Performed by OS | . -
| Timeouthreemption: The process receives a timer interrupt and relinquishes control back to the OS
dispatcher. The OS puts the process in “Ready” queue and dispatches another process to the CPU.
Dispatch: A processin “Ready” queue has been chosen to be the next running process.

Event Wait (Block/I/O Wait): A process invokes an I/O system call for an event that blocks the currently
executing process. OS puts the process in “Blocked® queue and dispatches another process to the CPU from

“Ready"” queue. | |
Evel_it Occurs (Unblock/1/0 Completion): An I/O system sends an interrupt to CPU to inform the completibn
of its task. OS may then decide to unblock the process which is waiting in blocked “queue™ and puts in “Ready”

quevue.

2.2.5 Types of Process

Processes may be categorized'a's:' | .
-~ * (CPU-bound: Process does not need much I/O service, almost always want the CPU.

)/O-bound: Short CPU burst times, needs lots of I/O service. |
e Interactive: Short CPU burst times, lots of time waiting for user input (keyboard, mouse).

2.2.6 Types of 1/0 (Syncronous and Asyncronous |/O) S . -
1. Synchronous l/O: The process programming |/O operation will be blocked in the block state till 1/O

operation is completed. Once |/O operations is completed ISR (Interrupt Service Routine) will initiated
which places the process from block to ready state. | |

>

2. Asynchronous I/0: An asynchronous I/O while initiating |/O request a handler function will be registered.
The process is not placed in block state it continues to execute remaining code after initiating /O

request. At the point of I/O request is completed the signal mechanism is used to notify the process
that data is available and registered handler function is asynchronously invoked. All information

about process will be store in handler function like type, what it does-etc.?

MODE So0s . Theorywith Soived Examples [

- cere ycha's Bast Inatitute lor IES GAIE & PSUs

MADE ERSY
" | Computer Science & IT Postal Study Course EX1E] N

’ (In asynchronous I/O it will not go to

’ wait state and complete instruction
. independent of UO)
Signal to
notify process

2.2.7 Process Memory Image

Memory image of a process has following 5 sections which are used while running a process.

- Data Segment: It stores initialized static and global data of stored prf)gram and sﬁize is' fixec!.
* BSS (Block Stated by Symbol) Segment: it stores uninitialized static data that is defined in the

program (e.g., global uninitialized strings, numbers, structures). Size of BSS is fixed.
* Heap Segment: it is dynamically allocated

memory. Memory can be allocated and deallocated
dynamically at run time. '

Stack Segment: It used to maintain the call stack, which holds return addresses, local variables.
temporary data, and saved registers. Stack is dynamic.

228 Important Commands (System Calls)

the same

lo the parent. Any
be invisible to the parent and vice versa.

program and has the same open files. It is, however, a copy and not a reference
-memory modifications or changes to open file status will
fork system call : (i) Returns -

process creation is sucecesful, (i) Returns 0 to newly created process.
The parent and child process have same virtu

NOTE: For N fork .sgéa‘t'e.rﬁént oN

al address but physical address will be different.
-1 child process will be created:

| _Exambie - 21

Find the number of child processes created for the following code and also
find how many times “Hello” is printed. |
main()
{
fork();
printf(*Hello");
}

Solution:

Text Segment/Test Region: It stores the machine instructions of stored program and size is fixed.

ve value if process creation is unsuccessful, (i) Returns +ve value if ~

ALYk # " o .

Ao 7 TewT LI

Operating System |

hﬁ_—__ - F-—-.-.—-.i_#,‘_)

- number of child brocesses created for the following code and also 'x
Hello" is Printed. |
main() |

{

fork(); |
fork(): | |
printf(*Hello™); |

}

Solution:

Three child processes are created. “Hello” is printed four times.

execve: execve does not create a new process. It loads a new program from the file system to
overwrite the current process, reinitializing the process’ memory map. It is often used immediateli(
alter fork to allow have the child process created by fork to load and run a new program.

e exit: exittells the operating system to terminate the current process.

e wait: wait allows a parent to wait for and detect the termination of child processes.

* signal: signal allows a process to detect signals, which include software exceptions, user-defined
signals, and death of child signals.

o Kill: kill sénd_g\aﬂgnal to a specilied process. The signal can usually be detected with signal. It

does not kill the process unless the signal is a kill (or terminate) signal.

Program started by user not exist m

Proces s xcoon (ask sconpioe) | Runing | Toninaied _

Process initiates /O

|5
g

Events of a Process

#
¥
"

cs B

e Ca i ‘Theory with Solved Examples:

DE EASY
POStal Study Course m E E-Eu insttuta fu €S CATE & PSUs

.| Computer Science & IT

2.3 Operations on a Process

1. Process creation: The following events lead to the process creation. |
(a) Systcem i:itialization (syitern booting) creates several background processes {email,
logon, étc).
(D) Auser requests to create a new process.
(c) Already runningto process (existing) can create a new process.
(d) Batch system takes initiation of a batch job | |
2 Process termination: The following events lead to the process termination |
(@) Process-triggered: When a process completes its execution it executes “exit” systern call to
indicate to the OS that it has finished.
(b) OS-triggered: “Service errors” like no memory left for allocation and I/O errors “Preemption” of a
process when total time limit exceeded. In both the cases the process can be terminated, called
as "total errors”.

() Hardware Interrupt triggered: Arithmetic errors, out of bounds memory access, etc. are program
bugs which terminates a running process.

(d) Software interrupt triggered: A process can be terminated by another process by executing
system call to kill the process that informs OS.
3. Process blocking: When a process invokes an I/O system call that blocks the process and OS put

this process in block mode (waiting for I/O) and dispatches another process to CPU.
4. Process preemption: When a timeout occurs, the process receives a timer |
the control back to OS dispatcher.

another process to CPU.

2.4 Scheduling

Scheduling depends on three scheduler in the system
1. Long-term scheduler

2. Medium-term scheduler
3. Short-term scheduler

nterrupt and relinquishes
OS puts the current process in ‘Ready mode” and dispatches

24.1 Long-term Scheduler (LTS)
* lItinvolves in a decision to add 3 Job to the

	10_1
	10_2
	10_3
	10_4
	10_5
	10_6
	10_7
	10_8
	10_9
	10_10
	10_11
	10_12
	10_13
	10_14
	10_15
	10_16
	10_17
	10_18
	10_19
	10_20

