WWW.GRADESETTER.COM
DESIGN AND ANALYSIS OF ALGORITHM

_/’_____—

Problem to Program

Introduction

Performance Evalu;tion 9 | 2 -7
Sorting Problem X ._ 7_— 18 |

| £ 4 e

‘ Mathematical Preliminaries _ | | _13 - 20 ‘
Asymptotic Notation | 21 - 27
Key o ’ ; 28 N

WWW.GRADESETTER.COM

[} []
T N

https://gradesetter.com

T

| WWW.GRADESETTER.COM
DESIGN AND ANALYSIS OF ALGORITHM (.

e e e S —

e §
i{. PROBLEM TO PROGRAM | \
e . — — : e .
Mathematical [Abstract Data Type Data Structure \

~_____Model . (ADT) N (DS)
Informal ——=>| pseudo Language | Program
Code | (C-Program)

algorithm

#—

1) Model the problem using an appropriate mathematic model (Informal algorithm)

2) The informal algorithm is written in pseudo IaW
gives various types of data used and

3) The stepwise refinement of pseudo language
operations to be performed on data. (i.e., data type)
T

4) We create ADT for each data type/
5) We choose an appropriate Data Strucure to W@&

6) Finally replace informal statements in pseudo language code by C-cod

An -algorithm is a finite sequence of computational steps that transform the
output in finite number of steps
______—————"’/

& A

‘input into the

|
I

'_Z qgédata type is a collection of objects and a set of operations that act on those objects

An abstract data type (ADT) i§,_ a data type.that Is organized in such a way that the
specification of the objects and’ the operations—on the objects is separated from the

(< representation of the objects and the implementation of the operation. ADT is mathematical
: model of data type 4 s

f

o store and organize data in order to facilitate access and
ture works well for all purposes, and so it IS important to
f ceveral of them. We use DS to implement ADT.

A data structure(DS) is a way t
modifications. No single data_struc
know the strengths and limitations O

pseudo code: Mixture of natural language and high level programming language constructs
_f that describes algorithm

A program IS an expression of an algorithm in @ programming language

2, INTRODUCTION

e S

[1. Non-Computational problem

A problem that has no precise and simple specification
Example: Convince your hoss for salary hike; convince your faculty for marks.

{ 2. Computational problem

e

e B e =

\ Specification output as function of input

Specification of input \

—

Example: The sorting problem:__

Input: a sequence <al, az,......,an= of n numbers. |
Output: a permutation <al, a2 ,...,an > of the input with al <= a2 <=..<= .
cacrianee s ________4_//9""—-———;—"—"""__
1

WWW.GRADESETTER.COM

https://gradesetter.com

3. Algorithm Definition
—_— - or set of
An Algorithm is well-defined computational nrocedure that takes~some value Values

as input and produces some value, or set of values_as outpu /
‘ ' ;)/ onal problent

| | ‘ of a t]
Instance: A particular input called an lns;g,g of a cgmputall |
Example: Thz input sequence <31, 41,759, 26, 41,506> IS an instance of the sorting problem,

4. Algorithm Characteristics

All algorithms should satisfy the following criteria.

Input: Zero or more quantities are externally supplied.

Output: At least one quantity:is_produced.” /
nambiguous.

Q#Definiteness: Each instruction is clear and .
Finiteness: For all cases, the algorithm terminates after a finite number-ofsteps.
Effectiveness: instruction is basic enough to be carrie}oﬂut.

Definition: Algorithms that are definite and effective are called computational procedu‘r‘e,s
Example: Digital computer. - . e +

Definition: An algbrithm is said to be correct if, for every input instance_{ it halts with the

correct output, v y
e Design a/n/a[gorithm: Creating and algorithm is an art which may never be fully
automated :
Different design strategies: Divide and Conquer, Greedy, Dynamic programming....etc.
* EXxpress an algorithm: Algorithm specification using Pseudo code.
¢ Validate an algorithm (correctness): To show that-algérithm computes the correct
answer for all possible legal inpyt |
* Analysis an algorithm: Find the time and space complexity. Prove that we cannot solve
the problem any faster using a%mp@y
\—:/Lq(pgl!ementat_i_on': Implementing algorittim in a progr ing language

] d L] L] o r il K t - :

,I . . 4 a ...:‘r "f' 3 g <l B = L] roe I I : _.J|1i‘-‘\

= - r L] ‘ t-‘ i " - : ; ‘I ! : = % s (! - ‘;1' 17 " 'R 1_'. 4{'] T i I -'I ‘- L. -" .ﬁ‘ ; ." ' .!‘:'L"-
M

[1. Performance evaluation ’

As an algorithm is executed, it uses the computers CPU to perform operations and its memory
to hold the program and data.

An efficient algorithm
» needs less running time
e uses less space

1.1.Space Complexity: The space complexity of an algorithm is the amount of memory if
needs to run to completion.

1.2. Time Complexity: The time complexity of an algorithm is the amount of computer time it
needs to run to completion.

1.3. Performance evaluation of an algorithm refers to the task of computing space and time
complexity of an algorithm
1.4 Performance evaluation can be loosely divided into two major phases:
1) a priority estimates (Performance Analysis)
» Uses analytical methods
* Machine independent

Verification :Test the program (debugging and profiling)

=

- s

- ———— e ———— = - - —— — —————

WWW.GRADESETTER.COM

_ ".""F.'-'-—"J-_ -_-.“ - gy 'h-i-_. s — - i — o - - =
"

| I e el o

https://gradesetter.com

e — - . S -

e i = - - -
— -—-----L_—. L e T e S

o e e S omiy WA

e

a2l i P e e g

WWW.GRADESETTER.COM

DESIGN AND ANALYSIS OF ALGORITHM

2)- a posterior testing: (Performance Measurement or profiling) : . _
. It is the process of executing a correct program on data sets and .measu‘r:i i
and space it takes to compute results ng time
« Machine dependent
performance Analysis is general methodology because
1t uses high level description of an aIgorithm(Pseudo-code)
, All possible input instances are taken into account
. Machine independent

2. Space complexity

2.1'Cpmponents of space complexity

Instruction space:
Space needed for code

Data Space:
i, Space needed for constants and simple variables
i. Space needed for dynamically allocated objects (Such as arrays, structures, etc)

Environment stack space:
. 1Itis used to save information needed to resume execution of partially executed function.

i Each time a function Is invoked the following data are caved on the environment stack

The return address
The values of local variables and formal parameters

Recursion stack space. Amount of stack space needed by recursive functions is called

ecursion stack space. It depends on
. Space needed by local variables and formal parameters
. Maximum depth of recursion (i.e., maximum number of nested recursive calls)

« Compiler being used
The total space needed by a program is divided into two parts:

1. Fixed Part
7. Variable Part

A fixed part independent of instance characteristics (e.g., size, number, value)

1. Instruction space
2. Data space (space needed for constants and simple variables and some dynamically

allocated objects)
Note: The space needed by some of the dynamically allocated memory may also

be independent of problem size
3 Environment stack space for non-recursive functions

- A variable part dependent on instance characteristics

1. Dynamically allocated space
2. Recursion stack space

2.2 Definition

The space complexity S (P) of any algorithm P can be written as
C constant that denotes fixed part
S, Variable part that depends on instance characteristics (1) (e.g., size, number, value)

] WWW.GRA’DESETTER.COM

\

https://gradesetter.com

WWW.GRADESEETRACRMD ANALYSIS OF ALGORITHM

e — N
2.3 Examples

1. Algorithm abc(a, b, c)
{

Y

C = Space needed for a, b, ¢ and result; Sp(abc) = 0

return a + b + b*c/(a+b+4.0);

2, Algorithm Sum(a, n)

{
s = 0,
for(i=1ton)
s =5+ aJfil;
return s;
}

Space required for

e formal parameters a and n

 |ocal variables s, i and constant O

¢ instruction space.
This amount of space needed does not depend on value of n.

Ssum(n) = 0 . .
Since a is actually the address of the first element in a[](i.e., a[0]), the space needed by it is
a!so constant |

3. Algorithm rsum(int a[], int n)
{
if(n>0)
return rsum(a, n-1)+a[n-1];
return 0;
)

Let reference of a = 4bytes; value of n = 4 bytes; return address = 4 bytes are stored on
reecursion stack for each recursion call.

t.ach recursive call require 12 bytes
Depth of recursion = (n+1)
reacursion stack space = 12(n+1)
Soum(n) =12 (n+1)

r_ == =

3. Time Conr'n plexity

_‘l

3.1 Time Complexity l

Time taken by a program P is sum of compile time and runtime
T(P) = C + Tp(I)
C (compile time) is independent of instance characteristics (.- constant)
Tp(I) (Run time) is dependent on instance characteristics.

(i) However, analytical approach to determine the exact runtime is complicated

° Since runtime depends on machine dependent issues like
rate (rate/write operations), iii) Architecture and machine in

(i) Run time expression should be machine-independent.

1) Type of processor, ii) Aﬁ:cess
dependent issue iv) INnput size.

T_herefc_:)re, we estimate runtime as function of Input size. i.e.
[Ime with respect to input size.

~_Running time = f(input size)

, we find rate of growth of

/

WWW.GRADESETTER.COM

https://gradesetter.com

	Binder1_Page_5_Page_1
	Binder1_Page_5_Page_2
	Binder1_Page_5_Page_3
	Binder1_Page_5_Page_4
	Binder1_Page_5_Page_5

