

CHEMISTRY

Target : JEE (Main)

METALLURGY

WWW.GRADESETTER.COM

METALLURGY

CONTENTS

Topic	Page No.
Theory	
	01 – 27
Exercise - 1	28 – 32
Exercise - 2	32 – 35
Part - I : Objective Questions	32-33
Part - II : Assertion/Reasoning	
Exercise - 3	36-38
Part - I : JEE (Main) /AIEEE Questions	
Part - II : JEE (Adv.)/ IIT-JEE Questions	
Answer Key	39 – 40
JEE-MAIN Practice Test Paper	41 – 43
JEE-MAIN Test Paper Answers	44
JEE-MAIN Test Paper Solutions	44 – 47

JEE (MAIN) SYLLABUS

General Principles and Processes of Isolation of Metals

Modes of occurrence of elements in nature, minerals, ores; steps involved in the extraction of metals-concentration, reduction (chemical. and electrolytic methods) and refining with special reference to the extraction of AI, Cu, Zn and Fe; Thermodynamic and electrochemical principles involved in the extraction of metals.

JEE(ADVANCED) SYLLABUS

Extractive metallurgy: Chemical principles and reactions only (industrial details excluded); Carbon reduction method (iron and tin); Self reduction method (copper and lead); Electrolytic reduction method (magnesium and aluminium); Cyanide process (silver and gold).

C Copyright reserved.

All rights reserved. Any photocopying, publishing or reproduction of full or any part of this study material is strictly prohibited. This material belongs to enrolled student of RESONANCE only any sale/resale of this material is punishable under law, subject to Kota Jurisdiction only.

WWW.GRADESETTER.COM

Metallurgy

Introduction:

The compound of a metal found in nature is called a mineral. The minerals from which metal can be economically and conveniently extracted are called ores. An ore is usually contaminated with earthy or undesired materials known as gangue. So all minerals are not ores but all ores are minerals. Ores may be classified mainly into following four classes.

- (a) Native ores: They contain the metal in free state. Silver, gold, platinum etc, occur as native ores.
- (b) Oxidised ores: These ores consist of oxides or oxysalts (e.g. carbonates, phosphates, sulphates and
- (c) Sulphurised ores: These ores consist of sulphides of metals like iron, lead, zinc, mercury etc.
- (d) Halide ores: These ores consist of halides of metals.

Important ore:

- 1. Oxide ore:
 - (i) Bauxite → Al₂O₃.2H₂O (Major ore of Al)
 - (ii) Haematite → Fe,O,
 - (iii) Zincite = ZnO
- *** (iv) Cassiterite or tin stone \rightarrow SnO₂ (Black Tin = 60 70% SnO₂)
- 2. Carbonate ore:
 - (i) Lime stone → CaCO₃
- Dolomite → CaCO₃.MgCO₃ Malachite → CuCO₃·Cu(OH)₂ (ii)
- (iii) Siderite → FeCO3

- (iv) Calamine → ZnCO₃
- (v) Azurite → 2CuCO₃.Cu(OH)₂
- *** (vi)
- (vii) Cerussite → PbCO₃
- Sulphate ore:
- Epsom salt → MgSO₄.7H₂O
- Silicate ore:
- Feldspar → KAISi3O8
- 5. Sulphurised ore: Consist of sulphides of metal like Iron, lead, zinc & mercury.

(iv)

- Copper glance → Cu,S
- (i) Iron pyrites → FeS,

- Zinc Blende → ZnS (iv)
- (iii) Copper pyrite or chalcopyrite → CuFeS2
- Cinnabar → HgS (vi)

- (v) Galena → PbS
- 6. Halide ore:

- Sylvine → KCI
- (i) Cryolite → Na₃AIF₆ (iii) Carnallite → KCI.MgCI.6H,O
- Fluorspar → CaF,
- (v) Hom silver → AgCl

Note: Mg obtained from both sea water & earth crust.

Solved Examples

Example-1 Solution

Which metals are supposed to occur in the native state in nature?

Elements below hydrogen in the electrochemical series like Cu, Ag, Au etc, exist native ores.

Example-2

Match the ores listed in Column-I with their correct chemical formula listed in Column-II.

Column II Column I FeCO, (p) (A) Cassiterite SnO, (q)

(B) Siderite PbSO, (r) (C) Cerussite PbCO, (s) (D) Anglesite

Solution

SnO₂ is called as cassiterite or tin stone, FeCO₃ is called as siderite, PbCO₃ is called as cerussite and PbSO₄ is called anglesite. So correct match is (A) \rightarrow (q), (B) \rightarrow (p), (C) \rightarrow (s) and (D) \rightarrow (r).

Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Toll Free: 1800 200 2244 | 1800 258 5555 | CIN: U80302RJ2007PLC024029

Metallurgy:

The scientific and technological process used for the extraction/isolation of the metal from its ore is called as

The isolation and extraction of metals from their ores involve the following major steps:

- (A) Crushing of the ore.
- (B) Dressing or concentration of the ore.
- (C) Isolation of the crude metal from its ore
- (D) Purification or refining of the metal.

Physical Method: 1.

- Crushing and Grinding: The ore is first crushed by jaw crushers and ground to a powder (pulverisation of (A) the ore) in equipments like ball mills and stamp mills.
- Concentration: The removal of unwanted useless impurities from the ore is called dressing, concentration (B)

It involves several steps and selection of these steps depends upon the difference in physical properties of the compound of metal and that of gangue. Some of the important procedures are described below.

Example-3

Solution

Example-4

solution

2.

Metallurgy

(i) Hydraulic washing or Gravity separation or Levigation method : It is based on the difference in the densities of the gangue and ore particles. In this, the powdered ore is agitated with water or washed with a upward stream of running water, the lighter particles of sand , clay etc are washed away leaving behind heavier ore particles. For this either hydraulic classifier or Wilfley table is used. This method is generally used for the concentration of oxide and native ores.

(ii) Electromagnetic separation :

It is based on differences in magnetic properties of the ore components.

It is used when either the ore or the impurities associated with it are magnetic in nature. A magnetic separator consists of a belt (of leather or brass) moving over two rollers, one of which is magnetic. When the powdered ore is dropped on the belt at the other end, magnetic component of the ore is attracted by the magnetic roller and falls nearer to the roller while the non-magnetic impurities fall away from it.

Examples: Chromite ore(FeO.Cr,O3) is separated from non-magnetic silicious impurities and cassiterite ore (SnO₂) is separated from magnetic Wolframite (FeWO₄ +

Electromagnetic separation

(iii) Froth floatation process: This method is commonly used for the concentration of the low grade sulphide ores like galena, PbS (ore of Pb); copper pyrites Cu₂S.Fe₂S₃ or CuFeS₂ (ore of copper); zinc blende, ZnS (ore of zinc) etc., and is based on the fact that gangue and ore particles have different degree of wettability with water while the ore wettability with water and pine oil; the gangue particles are preferentially wetted by water while the ore particles are wetted by oil. In this process one or more chemical frothing agents are added.

(a) Frothers: These form stable froth which rises to the top of the flotation cell. Oils like pine oil, camphor oil etc. are used as frothers. etc., are used as frothers. These are added in small quantity. The stabiliser are added to the frothers so that

(b) Collectors: Potassium or sodium ethyl xanthate is used as a collector. These get attached with the particles of the sulphide ore and thus make them water-repellant. Consequently the ore particles pass on

(c) Activating and depressing agents: When a mineral contains other minerals as impurities. The addition of these agents activates or depresses the flotation property of other minerals present as impurities and thus helps in separating the impurities. For example galena (PbS) usually contains the minerals namely zinc blende (ZnS) and pyrites (FeS₂) as impurities. Flotation is carried out by using potassium ethyl xanthate (used as a collector) along with NaCN and Na₂CO₃ (used as depressing agent). The addition of NaCN and Na₂CO₃ depresses the flotation property of ZnS and FeS₂ grains, so mainly PbS passes into the froth when air is blown in. After PbS has been collected with the froth, the process is repeated by adding CuSO (activator) which activates the flotation property of ZnS grains which are now removed with the froth. The acidification of the remaining material left in the flotation cell leads to the flotation of FeS₂.

Froth floatation process

Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Toll Free: 1800 200 2244 | 1800 258 5555 | CIN: U80302RJ2007PLC024029

WWW.GRADESETTER.COM

Solved Examples

Example-3

Solution

NaCN reacts with ZnS and forms a layer of Na₂[Zn(CN)₄] complex on the surface of ZnS and thus

How does NaCN act as a depressant in preventing ZnS from forming the froth?

Example-4 Solution

What is the role of stabiliser in froth floatation process?

Froth can last for a longer period in presence of stabiliser.

2. Chemical Method:

(iv) Leaching: Leaching is often used if the ore is soluble in some suitable solvent, e.g, acids, bases and suitable chemical reagents.

e.g. Al ore, Ag ore, Au ore, low grade copper ore.

Leaching of alumina from bauxite:

The principal ore of aluminium, bauxite, usually contains SiO₂, iron oxide and titanium oxide (TiO₂) as impurities. Concentration is carried out by digesting the powdered ore with a concentrated solution of NaOH at 473-523 K and 35-36 bar pressure. This way, Al₂O₃ is leached out as sodium aluminate (and also SiO₂ as sodium silicate) leaving behind the impurities, iron oxide and titanium oxide.

$$Al_2O_3(s) + 2NaOH(aq) + 3H_2O(I) \longrightarrow 2Na[Al(OH)_4](aq)$$

The aluminate in solution is neutralised by passing CO, gas and hydrated Al₂O₃ is precipitated. At this stage, the solution is seeded with freshly prepared samples of hydrated Al₂O₃ which induces the precipitation.

 $2Na[AI(OH)_{4}](aq) + CO_{2}(g) \rightarrow AI_{2}O_{3} \times H_{2}O(s) + 2NaHCO_{3}(aq)$

The sodium silicate remains in the solution and hydrated alumina is filtered, dried and heated to give back pure Al,O,:

$$Al_2O_3.xH_2O(s) \xrightarrow{1470K/calcination} Al_2O_3(s) + xH_2O(g)$$

These steps comprises the Bayer's process.

Other examples:

In the metallurgy of silver and that of gold, the respective metal/ore is leached with a dilute solution of NaCN or KCN in the presence of air (or O2) from which the metal is obtained later by displacement with zinc

$$4M(s) + 8CN^{-}(aq) + 2H_{2}O(aq) + O_{2}(g) \longrightarrow 4[M(CN)_{2}]^{-}(aq) + 4OH^{-}(aq) (M = Ag or Au)$$

 $2[M(CN)_{2}]^{-}(aq) + Zn(s) \longrightarrow [Zn(CN)_{2}]^{2-}(aq) + 2M(s)$

Extraction of crude metal from concentrated ore: (C)

The concentrated ore must be converted into a form which is suitable for reduction. Usually the sulphide ore is converted to oxide before reduction. Oxides are easier to reduce. Thus isolation of metals from concentrated ore involves two major steps as given below.

- (i) Conversion to oxide
- (ii) Reduction of the oxide to metal.
- (i) Conversion to oxide:

Conversion of ore into oxide is carried out in two ways depending upon the nature of ore.

Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in Toll Free: 1800 200 2244 | 1800 258 5555 | CIN: U80302RJ2007PLC024029

Calcination. It is a process of heating the concentrated ore strongly in a limited supply of air or in the absence of air. The process of calcination brings about the following changes : absence of air. The process of calculation brings about the following stranges:

(a) The carbonate ore gets decomposed to form the oxide of the metal, e.g.,

FeCO₃ (siderite) $\xrightarrow{\Delta}$ FeO + CO₂; PbCO₃ (cerrussite) $\xrightarrow{\Delta}$ PbO + CO₂ $CaCO_3$ (calcite ore / lime stone) $\xrightarrow{\Delta}$ $CaO + CO_2$ $ZnCO_3$ (calamine) $\xrightarrow{\Delta}$ $ZnO + CO_2$ $CuCO_3$. $Cu(OH)_2$ (malachite) $\xrightarrow{\Delta}$ 2CuO + $H_2O + CO_2$ $MgCO_3$. $CaCO_3$ (dolomite) $\xrightarrow{\Delta}$ $MgO + CaO + 2CO_2$ (b) Water of crystallisation present in the hydrated oxide ore gets lost as moisture, e.g., $2Fe_2O_3$, $3H_2O$ (limonite) $\stackrel{\Delta}{\longrightarrow} 2Fe_2O_3(s) + 3H_2O(g) \uparrow$ Al_2O_3 . $2H_2O$ (bauxite) $\xrightarrow{\Delta}$ Al_2O_3 (s) + $2H_2O(g)$ \uparrow

(c) Organic matter, if present in the ore, gets expelled and the ore becomes porous. Volatile impurities are

Roasting. It is a process of heating the concentrated ore (generally sulphide ore) strongly in the excess of Roasting. It is a process of its an exothermic process once started it does not require additional heating. The process of roasting does the following things:

heating. The process of rocking at moderate temperature. Some portion of the sulphide ores like galena (PbS), Zinc blende (ZnS) is converted into metallic oxide. If the temperature is fairly low (about 500°C) and the concentration of SO, in the gaseous environment is more, sulphate may be produced that are stable, and high temperature is needed to decompose them.

$$2PbS + 3O_2 \xrightarrow{\Delta} 2PbO + 2SO_2; \qquad 2ZnS + 2O_2 \xrightarrow{\Delta} 2ZnO + 2SO_2$$

$$PbS + 2O_2 \xrightarrow{\Delta} PbSO_4; \qquad ZnS + 2O_2 \xrightarrow{\Delta} ZnSO_4$$

* Some times roasting may not bring about complete oxidation.

(b) Roasting at high temperature. The sulphide ores of some of the metals like Cu, Pb, Hg, Sb etc., when heated strongly in the free supply of air or O₂ are reduced directly to the metal rather than to the metallic

$$Cu_2S$$
 (copper glance) + O_2 \longrightarrow 2Cu + SO_2
PbS (galena) + O_2 \longrightarrow Pb + SO_2
HgS (cinnabar) + O_2 \longrightarrow Hg + SO_2

The reduction of the sulphide ore directly into metal by heating it in air or O₂ is called by various names like self-reduction, auto-reduction, air-reduction etc. The SO₂ produced is utilised for manufacturing of H₂SO₄. (c) It removes easily oxidisable volatile impurities like arsenic (as As₂O₃)) sulphur (as SO₂), phosphorus (as P_4O_{10}) and antimony (as Sb₂O₃).

$$4M (M = As, Sb) + 3O_2 \longrightarrow 2M_2O_3 \uparrow$$

$$S + O_2 \longrightarrow SO_2 \uparrow ; P_4 + 4O_2 \longrightarrow P_4O_{10} \uparrow$$

These oxides are volatile and hence escape as gases through the chimney.

(d) When the concentrated tin stone ore SnO₂ (ore of Sn) is heated strongly in a free supply of air (roasting), the impurities of CuS and FeS present in the ore are converted into CuSO₄ and FeSO₄ respectively.

$$CuS + 2O_2 \xrightarrow{\Delta} CuSO_4$$
; $FeS + 2O_2 \xrightarrow{\Delta} FeSO_4$

Both calcination and roasting are generally carried out in a reverberatory furnace. In case of roasting, the air holes are kept open while they are partially or completely closed during calcination.

Smelting:

Slag formation: In many extraction processes, an oxide is added deliberately to combine with other impurities and form a stable molten phase immiscible with molten metal called a slag. The process is termed smelting.

Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Toll Free: 1800 200 2244 | 1800 258 5555 | CIN: U80302RJ2007PLC024029

The principle of slag formation is essentially the following:

Removal of unwanted basic and acidic oxides: For example, FeO is the impurity in extraction of Cu from copper pyrite.

Matte also contains a very small amount of iron(II) sulphide.

To remove unwanted acidic impurities like sand and P₄O₁₀₁ smelting is done in the presence of limestone.

$$CaCO_3 \longrightarrow CaO + CO_2$$
 $CaO + SiO_2 \longrightarrow CaSiO_3$ (fusible slag)
 $6CaO + P_4O_{10} \longrightarrow 2Ca_3(PO_4)_2$ (fusible slag - Thomas slag)

Properties of a slag:

(i) Slag is a fusible mass.

(iii) It is lighter than and immiscible with the molten metal. It is due to these impurities that the slag floats as a separate layer on the molten metal and can thus be easily separated from the metal. The layer of the slag on the molten metal prevents the metal from being oxidised.

Type of flux: Fluxes are of two types viz., acidic flux and basic flux.

(a) Acidic flux: It is an acidic oxide (oxide of a non-metal) like SiO2, P2O5, B2O3 (from borax). It is used to remove the basic impurity like CaO, FeO, MgO etc. The acidic flux combines with the basic impurity and

(b) Basic flux: It is a basic oxide (i.e., oxide of a metal) like CaO (obtained from lime stone, CaCO₃), MgO (from magnesite, MgCO₃), haematite (Fe₂O₃) etc. It is used to remove the acidic impurity like SiO₂, P₂O₅ etc. The basic flux combines with the acidic impurity and forms a slag.

Thus, slag can be defined as a fusible mass, which is obtained when a flux reacts with an infusible acidic or basic impurity present in the oxide ore.

The free metal is obtained by reduction of a compound, using either a chemical reducing agent or electrolysis.

A large number of commercial processes come under this category. Carbon can be used to reduce a number of oxides and other compounds, and because of the low cost and availability of coke this method is widely used. The disadvantages are that a high temperature is needed, which is expensive and necessitates the use of blast furnace.

(A) Reduction with carbon:

PbO + C
$$\longrightarrow$$
 Pb + CO (extraction of lead)
 $2Fe_2O_3 + 3C \longrightarrow 4Fe$ (spongy iron) + $3CO_2$
 $ZnO + C \xrightarrow{1200^{\circ}C} Zn + CO$ (extraction of zinc)
 $SnO_2 + 2C$ (anthracite) $\xrightarrow{1800^{\circ}C} Sn + 2CO$ (extraction of tin)
 $MgO + C \xrightarrow{1200^{\circ}C} Mg + CO$

(B) Reduction with CO: In some cases CO produced in the furnace itself is used as a reducing agent.

$$\begin{aligned} &\text{Fe}_2\text{O}_3 + 3\text{CO} \longrightarrow 2\text{Fe} + 3\text{CO}_2 \\ &\text{Fe}_3\text{O}_4 + 4\text{CO} \longrightarrow 3\text{Fe} + \text{CO}_2 \\ &\text{PbO} + \text{CO} \longrightarrow \text{Pb} + \text{CO}_2 \\ &\text{CuO} + \text{CO} \longrightarrow \text{Cu} + \text{CO}_2 \end{aligned}$$

Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Toll Free: 1800 200 2244 | 1800 258 5555 | CIN: U80302RJ2007PLC024029

Medium:

In aqueo products

sulphate In other water a In fuse Alumir chlorit

added

Flec and

fror

the

iw

Carbon or carbon monoxide reduction process is usually carried out in blast furnace. There are some

disadvantage of using carbon as reducing agents e.g.,

(a) Some metallic oxides like CaO give metallic carbides instead of metals.

$$CaO + 3C \xrightarrow{\Delta} CaC_2 + CO$$

(b) During the cooling of the products, in many cases, reformation of the oxide and carbon may take place.

$$MgO + C \xrightarrow{\Delta} Mg + CO$$

If the temperature needed for carbon to reduce an oxide is too high, for economical or practical purposes, reduction by other metals is done. Also, certain metallic oxides cannot be reduced by carbon because the affinity of oxygen for the metal is greater than its affinity for carbon. Such metallic oxides (Cr and Mn) can be reduced by a highly electropositive metal such as aluminium that liberates a large amount of energy (1675 kJ/mol) on oxidation to Al₂O₃. The process is known as Goldschmidt or aluminothermic process and the reaction is known as thermite reaction.

$$2Al + Fe_2O_3 \longrightarrow Al_2O_3 + 2Fe$$
 (molten); $\Delta H = -3230$ kJ (The reaction is used for thermite welding)

$$B_2O_3 + 2AI \longrightarrow 2B + Al_2O_3$$
 (extraction of boron)

As it is a strongly exothermic reaction, it proceeds with explosive violence and only initial heating is needed. Magnesium reduction method: Magnesium is used in similar way to reduce oxides. In certain cases where the oxide is too stable to reduce, electropositive metals are used to reduce halides.

Advantages of using Na and Mg as reducing agents are the higher reducing power of the metals and solubility of their halides in water so that the reduced metals can be washed free from impurities.

This method is also called auto-reduction method or air reduction method. If the sulphide ore of some of the less electropositive metals like Hg, Cu, Pb, Sb, etc. are heated in air, a part of these is changed into oxide or sulphate then that reacts with the remaining part of the sulphide ore to give its metal and SO₂.

Examples:

$$2 \text{HgS} + 3 \text{ O}_2 \longrightarrow 2 \text{HgO} + 2 \text{SO}_2$$

$$2 \text{HgO} + \text{HgS} \longrightarrow 2 \text{Hg} + \text{SO}_2$$

$$2HgO + HgS \longrightarrow 2Hg + SO_2$$

 $Cu_2S + 3O_2 \longrightarrow 3Cu_2O + 2SO_2$

$$2Cu_2O + Cu_2S \longrightarrow 6Cu + SO_2$$

$$2PbS + 3O_2 \longrightarrow 2PbO + 2SO_2$$

The extraction of Pb by heating its sulphide ore (PbS) in air can also be represented as

4. Electrolytic reduction:

It presents the most powerful method of reduction and gives a very pure product. As it is an expensive method compared to chemical methods, it is used either for very reactive metals such as magnesium or aluminum or for production of samples of high purity. Electrolytic reduction of copper has the additional advantage of allowing the recover of valuable minor contaminants such as silver.

Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Toll Free: 1800 200 2244 | 1800 258 5555 | CIN: U80302RJ2007PLC024029

- In aqueous solution: Electrolysis can be carried out conveniently and cheaply in aqueous solution that the products do not react with water. Copper and zinc are obtained by electrolysis of aqueous solution of their
- In other solvents: Electrolysis can be carried out in solvents other than water. Fluorine reacts violently with water and it is produced by electrolysis of KHF₂ dissolved in anhydrous HF.
- In fused melts: Elements that react with water are often extracted from fused melts of their ionic salts. Aluminum is obtained by electrolysis of a fused mixture of Al₂O₃ and cryolite Na₃[AlF₄]. Both sodium and chloring are obtained by electrolysis of a fused mixture of Al₂O₃ and cryolite Na₃[AlF₄]. chlorine are obtained from the electrolysis of fused NaCl. In this case upto two-third by weight of CaCl₂ is added as an impurity to the electrolysis of fused NaCl. In this case upto two-third by weight of CaCl₂ is added as an impurity to lower the melting point from 803 to 505°C.

Electrolytic reduction can be regarded as a technique for driving a reduction by coupling it through electrodes and external circuit to a property available and external circuit to a reactive or a physical process with a more negative AG. The free energy available from the external control of the energy available and external circuit to a reactive or a physical process with a more negative AG. The free energy available from the external source can be assessed from the potential it produces across the electrodes using the

where n is the number of electrons transferred, F is Faraday's constant (F = $96.5 \, \text{kJ/mol}$) and E° is electrode

potential of the redox coupled formed in the system. Hence, the total Gibb's energy of the coupled internal and external process is

$$\Delta G + \Delta G$$
 (external) = $\Delta G - nFE_{ex}$

 $\Delta G + \Delta G$ (external) = $\Delta G - nFE_{oxt}$ If the potential difference of the external source exceeds

$$E_{ext} = -\frac{\Delta G}{nF}$$

the reduction is thermodynamically feasible; thus, the overall process occurs with a decrease in free energy.

More reactive motels have been found to be a least of partial so their reduction is difficult. If the More reactive metals have large negative values of the electrode potential. So their reduction is difficult. If the difference of two E^0 values corresponds to a positive E^0 and consequently negative ΔG^0 in equation (i), then the less reactive the less reactive metal will come out of the solution and the more reactive metal will go to the solution, e.g.,

In simple electrolysis, the Mnt ions are discharged at negative electrodes (cathodes) and deposited there. Precautions are taken considering the reactivity of the metal produced and suitable materials are used as electrodes. Sometimes a flux is added for making the molten mass more conducting.

Hydrometallurgy: The processing of ores and minerals as well as metals and their compounds at relatively low, often ambient temperatures employing aqueous solution is known as hydrometallurgy. Occasionally, organic reagents are also used. This method of extraction is generally used for low grade ores. Copper is extracted by hydrometallurgy from low grade ore it is leached out using acid and bacteria. The solution

A hydrometallurgical process for the extraction of metals from ores, concentrates, or secondary materials essentially contains three basic steps—dissolution of the valuable metal in the aqueous solution (leaching) purification of leach solution and subsequent recovery of metal from the purified solutions either by electrolysis or by adding some electropositive metal to it.

(A) Extraction of Ag and Au: Metals like Au and Ag can be precipitated for their salt solution by electropositive Metallic Ag is dissolved from its ore in dilute NaCN solution, and the solute so obtained is treated with scrap Zn when Ag is precipitated. Air is blown into the solution oxidize Na₂S. Leaching the metals like silver, gold

with CN⁻ is an oxidation reaction (Ag → Ag⁺ or Au → Au⁺)

It is an oxidation reaction
$$O$$
 2 [Ag(CN)₂]- (aq) + 3 (aq)
Ag₂S (s) + 4CN- (aq) \longrightarrow 2 [Ag(CN)₄]²- (aq) + 2Ag (s)
2[Ag(CN)₂]- (aq) + Zn (s) \longrightarrow [Zn (CN)₄]²- (aq) + 2Au (s)
4Au (s) + 8 CN- (aq) + O₂ (g) + 2H₂O (l) \longrightarrow 4 [Au(CN)₂]- (aq) + 2Au (s)
 O 2 [Ag(CN)₂]- (aq) + Zn (s) \longrightarrow [Zn(CN)₄]²- (aq) + 2Au (s)

$$2[Ag(CN)_{2}]^{-}(aq) + ZH(c)$$

$$4Au(s) + 8CN^{-}(aq) + O_{2}(g) + 2H_{2}O(l) \longrightarrow 4[H(c)]$$

$$4Au(s) + 8CN^{-}(aq) + ZH(s) \longrightarrow [Zh(CN)_{4}]^{2-}(aq) + 2Au(s)$$

$$2[Ag(CN)_2]^-(aq) + ZH(s)$$

$$4Au(s) + 8CN^-(aq) + O_2(g) + 2H_2O(l) \longrightarrow 4[Au(s)_2]$$

$$4Au(s) + 8CN^-(aq) + Zh(s) \longrightarrow [Zh(CN)_4]^2 - (aq) + 2Au(s)$$

$$2[Au(CN)_2]^-(aq) + Zh(s) \longrightarrow [Zh(CN)_4]^2 - (aq) + 2Au(s)$$

$$2[Au(CN)_2]^-(aq) + Zh(s) \longrightarrow [Zh(CN)_4]^2 - (aq) + 2Au(s)$$

Here Zn acts as reducing agent.

Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005 Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in Toll Free: 1800 200 2244 | 1800 258 5555 | CIN: U80302RJ2007PLC024029

8 - JTMNIAM

Metallurg)

THE

The

ext

by

fur

cs

It

Metallurgy

(B) Extraction of Aluminium: It involves the following processes

(a) Purification of bauxite :

(I) Bayer's Method (used for red bauxite containing Fe₂O₃ and (used for red critics) silicates as impurities) AI,O,. 2H,O + 2NaOH -

2NaAlO2 (soluble) + 3H2O Fe₂O₃ (insoluble) separated as red mud by filteration solution is diluted with water and seeded with freshly prepared Al(OH)₃. It induces the precipitation of AI(OH)3. AI(OH)3 is filtered leaving behind silicates in solution.

NaAlO₂+2H₂O → NaOH+Al(OH)₃↓ 2AI(OH), -1473K A AI,O, +3H,O

(II) Hall's Method (used for red bauxite containing Fe₂O₃ and silicates as impurities)

Al₂O₃. 2H₂O + Na₂CO₃-2NaAIO2 (soluble) + CO2+2H2O 2NaAlO₂+3H₂O+CO₂ -60°C -

2AI(OH),↓+Na,CO, 2AI(OH), -1473K A AI₂O₃+3H₂O

(III) Serpeck's Method
(used for white bauxite containing silica as impurities)

1800°C Al₂O₃ .2H₂O + 3C + N₂ Electric fu

2AIN + 3CO + 2H2O 2AIN + 3H2O → AI(OH), + NH,

SiO₂ + 2CO → 2CO₂ + Si

Silicone volatilises at this temp. 2AI(OH), 1473K A AI2O, + 3H,O

(b) Electrolytic reduction (Hall-Heroult process):

The purified Al₂O₃ is mixed with Na₃AlF₆ (cryolite) or CaF₂ (fluorspar)) which lowers the melting point of the mixture and brings conductivity. The fused matrix is electrolysed. Steel cathode and graphite anode are used. The graphite anode is useful here for reduction to the metal. The overall reaction may be taken as:

2AI2O3 + 3C --- 4AI + 3CO2

The electolysis of the molten mass is carried out in an electrolytic cell using carbon electrodes. The oxygen liberated at anode reacts with the carbon of anode producing CO and CO2. This way for each kg of aluminium produced, about 0.5 kg of carbon anode is burnt away. The electrolytic reactions are:

Al3+ (melt) + 3e- ------ Al(I)

Anode:

 $C(s) + O^{2-}(melt) \longrightarrow CO(g) + 2e^{-}$

Extraction of Na: The fused mixture of NaCl and CaCl₂ is taken in Down's cell which consists of circular iron cathode and carbon anode. On passing the electric current the following reactions take place:

Ionisation of NaCl Collection of Na at cathode

NaCl = Na+ + Cl- $Na^+ + e^- \rightarrow Na(Reduction).$

Collection of Cl₂ at anode

 $Cl^- + e^- \rightarrow Cl$ (Oxidation), $Cl + Cl \rightarrow Cl_2$.

Na can also be obtained by electrolysing molten NaOH in Castner's cell.

Solved Examples

Example-5

Common impurities present in Bauxite are:

(1) CuO

(2) ZnO

(3) Fe₂O₃

(4) SiO,

Solution

(3) Red Bauxite contains Fe₂O₃ as impurity. (4) white Bauxite contains SiO₂ as impurity. Therefore, (3) and (4) are correct options.

xample-6 olution

Which metals are generally extracted by the electrolytic reduction and why? Sodium, aluminium, magnesium etc. are extracted by the electrolytic reduction of their fused salts because being more reactive and electropositive elements they themselves acts as strong reducing agents. Hence they can not be extracted by any of the chemical methods.

Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005 Website : www.resonance.ac.in | E-mail ; contact@resonance.ac.in

Toll Free : 1800 200 2244 | 1800 258 5555 | CIN: U80302RJ2007PLC024029

THERMODYNAMICS OF EXTRACTION: ELLINGHAM DIAGRAM OF A METAL

The standard electrode reduction potential of metal provides a very good indicator or the ease or difficulty of extracting the metal from its compounds. However, since most metals of industrial importance are obtained by chemical reduction of their oxide, the free energy changes occurring during these processes are of more fundamental importance. Despite the fact that redox reactions do not always reach equilibrium thermodynamics can at least be used to identify which reactions are feasible. For a spontaneous reaction the change in free energy ΔG must negative, $\Delta G = \Delta H - T \Delta S$.

It is sufficient to consider ΔG because it is related to the equilibrium constant through, $\Delta G = -RTInK$. Here a negative value of ΔG corresponds to K > 1 and, therefore, a favourable reaction. Reaction rates are also relevant, but at high temperature reactions are often fast and we can normally assume that any thermodynamically permissible process can occur.

The problem of extracting a metal from its ore is essentially concerned with decomposing the exide of the metal (apart from simple binary compounds such as metal sulfides and chlorides that occur in nature). Most metal ores consist essentially of a metal oxide in association with one or more nonmetal oxides. Ores like carbonates, sulphides etc., are also converted to oxides, prior to reduction.

The free energy of formation ΔG is the standard free energy of the reaction.

If the standard free energy of formation ΔG has a negative sign at a given temperature, then the oxide can be expected to form spontaneously from the metal plus oxygen. If ΔG has a positive sign, the oxide will be expected to decompose spontaneously to its elements.

The free energy of formation of an oxide can now be determined, provided we know the entropy of formation.

$$\Delta G = \Delta H - T \Delta S$$
(3)

In reaction (2) oxygen is used up in the course of reaction. Gases have a more random structure (less ordered) than liquid or solids. In this reaction the entropy or randomness decreases, and hence AS is negative (provided that neither the metal nor its oxide M_xO_y are vaporized). Thus, if the temperature is raised then TAS becomes more negative. Since TAS is subtracted in equation (3), AG then becomes less negative.

Thus, the change in free energy decreases with increase in temperature. The free energy change that occurs when 1 mol of common reactant (in this case O₂) is used may be plotted graphically against temperature for a number of reaction of metals to their oxides. This graph is shown in following figure and is called an Ellingham diagram for oxides. Similar diagrams can be produced for 1 mol of S, giving Ellingham diagram for sulphides and similarly for halides using 1 mol of halogen.

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in Toll Free : 1800 200 2244 | 1800 258 5555 | CIN: U80302RJ2007PI

Tha

tha

lie

cai

po

This figure shows a number of oxide plots with slopes defined by $\Delta G / T = -\Delta S$. It is noted that the entropy change in reaction (2) is roughly the same for all metal oxides provided that the boiling point of neither the metal nor oxide is exceeded. Thus, below the boiling point of metal the slope of all the graphs are roughly the same, since TAS factor is same whatever be the metal. When the temperature is raised a point will be reached where the graph crossed the $\Delta G = 0$ line. Below this temperature the free energy of formation of oxide is negative, so the oxide is stable. Above this temperature the free energy of formation of the oxide is positive, and the oxide becomes unstable and should decompose into metal and oxygen. This explains why HgO, for instance, decomposes spontaneously into its elements when heated. Theoretically, all oxides can be decomposed to give metal and oxygen if a sufficiently high temperature can be attained. In practice, that are easily attainable and these metals can be extracted by thermal decomposition of their oxides. The diagram predicts that MgO and ZnO ought to decompose if heated strongly enough, but it does not hold out much hope for obtaining say pure Mg by straight forward heating of the oxide to a high temperature where the boiling point of the metal is exceeded. However the slope increases since the reaction is now involving a larger entropy change as the randomness increases in reactants. For example,

$$2 \text{ Mg (g)} + O_2 \text{ (g)} \longrightarrow 2 \text{ MgO(s)}$$

Here, three moles of gas phases are converted into solid phase in the reaction. This takes place above 1120°C, which is the boiling point of Mg.

Similarly Hg—HgO line changes slope at 365°C. Several of the plots show abrupt changes in the slopes. These breaks occur at temperature at which the metal undergoes a phase transition. A smaller effect is seen at the melting point. If, however the oxide undergoes a phase change, there will be an increase in the entropy of the oxide, and at such a point the curve becomes less steep. For example in the case of Pb, the oxide (PbO) boils while lead is liquid. In these instances the entropy change becomes positive for the reaction and hence the slope $\Delta G/T$ changes sign, the situation reverting to normal once the boiling point of Pb is reached. In principle, when the plot of one metal lies below that of another, the first metal is capable of reducing the oxide of the second. A vertical line drawn on the Ellingham plot of the metal oxides at any T gives the sequence of the stabilities of metal oxides. A metal forming a more stable oxide (higher $-\Delta G$) will be potential reducing agent for a less stable oxide. If the two lines intersect, the free energy change for the reduction will be zero at that temperature and equilibrium results, but a change of temperature will make the reaction proceed provided no kinetic barriers (activation energy) exist. Thus, Mg metal will reduce CuO and FeO but not CaO. Also, it is seen that at room temperature (27°C) the order of reducing ability approximates that of standard electrode potential.

Although the SiO₂ line is above the MgO line, Si can successfully reduce MgO to free metal. Upto 1100°C, the normal boiling point of Mg, the AG plot for formation of SiO₂ and MgO are parallel. However, above 1100°C the plot for MgO changes slope owing to the increased entropy effect, and above 1700°C the reaction between Si and MgO proceeds with decrease in free energy. In practice, the reaction is further enhanced by the distillation of Mg metal from the reaction mixture.

$$2 \text{ MgO} + \text{Si} \longrightarrow 2 \text{ Mg} + \text{SiO}_{2}$$

Carbon or carbon monoxide as reducing agent.

In figure the plot corresponding to the change $C(s) + O_2(g) \longrightarrow CO_2(g)$ is shown by a horizontal line. For this reaction ΔS is relatively small because in this case one mole of gaseous product is formed while one mole of gaseous reactant is used up. ΔG for this reaction is almost independent of temperature. The plot for CO_2 is relatively high in the figure, and at low temperature C will reduce only a few of metal oxides shown. However, the slopes of the plots for several of the metals are such that they cross the CO2 plot; hence theoretically these metals can be reduced by C at elevated temperature. An alternative reaction involving carbon and oxygen is the formation of CO.

$$2C(s) + O_2(g) \longrightarrow 2CO(g)$$

Since two of gaseous product is formed from one mole of gaseous reactant, this process is accompanied by n increase in entropy. Hence, the slope of the corresponding line is negative as shown by the downward oping line in the figure. If the temperature is high enough, C should reduce all the metal oxides, being nverted into CO. The plot for the reaction of CO with oxygen is also shown.

ere are three curves for carbon, corresponding to complete oxidation of C to CO2, partial oxidation to on monoxide, and oxidation of CO to carbon dioxide. The three curves pass through a common point at C. Thus, the free energies of formation of CO₂ from carbon monoxide and carbon dioxide from carbon are

Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Toll Free: 1800 200 2244 | 1800 258 5555 | CIN: U80302RJ2007PLC024029

$$2 CO(g) + O_2(g) \longrightarrow 2 CO_2(g)$$

 $C(s) + O_2(s) \longrightarrow CO_2(s)$

 $\Delta G = x \, kJ/mol$

Subtracting one equation from the other and rearranging, the following is obtained: $CO_2(g) + C(s) \rightleftharpoons 2 CO(g)$

That is, an equilibrium is set. It is clear below a temperature of 710°C, CO is a more effective reducing agent than carbon, but above this temperature the reverse is true. All three oxidation curves for the carbon system lie above that for oxidation of zinc, until a temperature of approximately 1000°C is reached. At this point, carbon is thermodynamically capable of reducing ZnO to Zn. Since this temperature is greater than the boiling point of Zn (907°C), it will be formed as a vapour. The overall equation for reduction is

ZnO(s) + C(s) - \rightarrow Zn(g) + CO(g)

It is interesting to note that the value of carbon as reducing agent is due to marked increase in disorder that takes place when carbon (an ordered solid) reacts with one mole of oxygen to give two moles of CO. The net effect is an extra mole of gas and hence an increase in disorder (an increase in entropy). It is a fact that in the region of 2000°C, carbon is thermodynamically capable of reducing most metal oxides to metal. Thus, for most metal oxides, a reducing agent is required and we should consider the overall reaction obtained by subtracting the metal oxidation from one of carbon oxidation as

$$\Delta G_{\text{overall}} = \Delta G_{(C)} - \Delta G_{(M)}$$

Metals as reducing agents:

Metal oxide reduction is thermodynamically favourable for temperatures at which the line for the metal oxide is above any one of the lines for carbon oxidation, for the ΔG for metal oxide reduction by carbon is negative.

Note: The Gibb's energies of formation of most sulphides are greater than that for CS2. In fact, CS2 is an endothermic compound. There, the $\Delta_f G^e$ of $M_X S$ is not compensated. So reduction of $M_X S$ is difficult. Hence it is common practice to roast sulphide ores to corresponding oxides prior to reduction. Similar principles apply to other types of reduction. For instances if the plot of $\Delta G_{(M)}$ lies above $\Delta G_{(M)}$ from M' is now taking the place of C. When $\Delta G = \Delta G_{(M)} - \Delta G_{(M)}$ is negative, the reaction, MO + M' \longrightarrow M + M'O is feasible.

Hydrogen as a reducing agent:

Hydrogen is not very effective reducing agent for obtaining metals from their oxides.

The reason is that ΔS is negative for the reaction:

$$2H_2(g) + O_2(g) \longrightarrow 2H_2O(g)$$

3 moles of gas

2 moles of gas

Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005 Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Toll Free: 1800 200 2244 | 1800 258 5555 | CIN: U80302RJ2007PLC024029

as the products are less disordered. The plot of ΔG against T therefore rises with temperature, m_{earling} not many metal oxide plots are intersected. H₂ will therefore reduced only with difficulty. In the occurrence of $\Delta M_{\text{earling}}$ and $\Delta M_{\text{earling}}$ are resplicitly. not many metal oxide plots are intersected. H₂ will therefore reduces oxide only with difficulty. In the oxide, but not the oxides of AI, Mg, and Ca. Oxides of iron are reduced only with difficulty. In the magnetic iron oxide Fe₃O₄ an equilibrium composition is readily established. In the case of W, Mo, and Co ΔG is above that of H₂O so H₂ can be reduce these oxides.

$$\begin{array}{ccc} \text{MoO}_3 + 3\text{H}_2 & \longrightarrow & \text{Mo} + 3\text{H}_2\text{O} \\ \text{GeO}_2 + 2\text{H}_2 & \longrightarrow & \text{Ge} + 2\text{H}_2\text{O} \\ \text{Co}_3\text{O}_4 + 4\text{H}_2 & \longrightarrow & 3\text{Co} + 4\text{H}_2\text{O} \\ \end{array}$$

 $WO_3 + 3H_2 \longrightarrow W + 3H_2O$ This method is not widely used because many metals react with H_2 at elevated temperature forming,

There is also a risk of explosion for H₂ and oxygen in the air.

Solved Examples -

The reaction $Cr_2O_3 + 2AI \longrightarrow Al_2O_3 + 2Cr$ ($\Delta G^0 = -421 \, \text{kJ}$) is thermodynamically fe_3 The reaction $Cr_2O_3 + 2AI \longrightarrow AI_2O_3 + 2CI$ (AS it not take place at room temperature as is apparent from the Gibb's energy value. Why does it not take place at room temperature as is apparent from the Gibb's energy value, vvny does the such reactions which are thermodynamical certain amount of activation energy is essential even for such reactions which are thermodynamical certain amount of activation energy is essential even for such reactions which are thermodynamical certain amount of activation energy is essential even for such reactions which are thermodynamical certain amount of activation energy is essential even for such reactions which are thermodynamical certain amount of activation energy is essential even for such reactions which are thermodynamical certain amount of activation energy is essential even for such reactions which are thermodynamical certain amount of activation energy is essential even for such reactions which are the such activation energy is essential even for such reactions which are the such activation energy is essential even for such activation energy even for such activation energy is essential even for such activation energy even for such activ

Solution feasible, therefore heating is required. reasible, therefore healing is required. Mg can reduce Al₂O₃ and Al can reduce MgO? What an it true that under certain conditions, Mg can reduce Al₂O₃ and Al can reduce MgO? What an it true that under certain conditions, Mg can reduce Al₂O₃ and Al can reduce MgO? What an it true that under certain conditions, Mg can reduce Al₂O₃ and Al can reduce MgO? What an it true that under certain conditions, Mg can reduce Al₂O₃ and Al can reduce MgO? What an it true that under certain conditions, Mg can reduce Al₂O₃ and Al can reduce MgO? What an it true that under certain conditions, Mg can reduce Al₂O₃ and Al can reduce MgO? What an it true that under certain conditions are the conditions

Example-8

those conditions?

Below 1350°C. All can reduce MgO as evident from the Solution Ellingham diagram.

Metallurgy of Some Important Metals

Extraction of iron (Fe) Ore: Haematite

Example-7

Oxide ores of iron, after concentration through calcination / roasting in reverberatory furnace (to remove water, to decompose carbonates and to oxidise sulphides) are mixed with lime stone and coke and fed into a Blast furnace from its top with the help of a cup and cone arrangement. Here, the oxide is reduced to the

Thermodynamics helps us to understand how coke reduces the oxide and why this furnace is chosen. One of the main reduction steps in this process is:

$$FeO(s) + C(s) \longrightarrow Fe(s/l) + CO(g)$$
s a couple of two simpler reactions (11)

It can be seen as a couple of two simpler reactions. In one, the reduction of FeO is taking place and in the other, C is being oxidised to CO:

$$FeO(s) \longrightarrow Fe(s) + \frac{1}{2}O_2(g) \left[\Delta G_{(FeO, Fe)}\right]$$
(12)

When both the reactions take place to yield the equation (10), the net Gibbs energy change becomes:

Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005 (14)

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Toll Free : 1800 200 2244 | 1800 258 5555 | CIN: U80302RJ2007PLC024029

MAINMTL - 13

Metallurgy

Naturally, the resulta

vsT plot representing goes downward. At 1 < AG FE F [AG_(c, co) < AG_{(fe, f.} a similar way the re

the basis of lower l

In the Blast furnar

from the bottom c itself. The burning

moves to upper Fe₃O₄) coming f

RESONANCE STUDY CENTRES (Self Owned)

KOTA (Head Office):

Pre-Engineering Division: JEE (Advanced) Pre-Engineering Division: JEE (Main) Pre-Medical Division: AlIMS/ AIPMT Td.: 0744-3012222, 3192222, 5635555 e-mail: contact@resonance.ac.in

Commerce & Law Program Division (CLPD)

Tel.: 0744-3192229, 6060663 e-mail: dpd@resonance.ac.in

PCCP

J-2 Campus: Tel.: 0744-2434727, 8924078330 e-mail: pccp@resonance.oc in

Station Campus: Tel.: 0744-3192223, 2440488 e-mail: pccp.stn@resonance.ac.in

PSPD/ MEx Division: Tel.: 0744-2422030 e-mail: pspd@resonance.ac.in, mex@resonance.ac.in

Tel.: 0744-6635556, 3012222 e-mail: dlpd@resonance.ac in

eLPD

Tel.: 0744-3058242 e-mail: elpd@resonance.ac.in

Tel.: 0141-6060661/64, 3103666, 6060662/63 e-mail: jaipurc@resonance.ac.in

Tel.: 0755-3206353, 3192222 e-mail: bhopal@resonance.ac.in

Tel.: 011-60606601/2/3/4/5/6/7 e-mail: delhi@resonance.ac.in

Tel.: 0522-3192222, 3192223, 6060660/ 61/ 62 e-mail: lko@resonance.ac.in

Tel.: 033-31922222, 60606600/ 01/ 02 email: kolkata@resonance.ac.in

Tel: 0712-3192222, 6060660 e-mail: nagpur@resonance ac.in

Tel.: 02462-250220 e-mail: nanded@resonance.ac.in

Tel.: 022-31922222, 60606600 e-mail: andheri@resonance.ac.in

Td.: 0294-6060660, 5107858, 6060662 e-mail: udaipur@resonance.ec.in

BHUBANESWAR

Tel.: 0674-3192222, 3274919, 6060660/ 61 e-mail: bbsr@resonance.ac.in

Tel.: 079-31922222/3/4 & 079-60606600/1/2 e-mail: abad@resonance.ac.in

Tel.: 0612-3192222/3 e-mail: patna@resonance.ac.in

Tel.: 0291-6060660 e-mail: jodhpur@resonance.ac.in

Tel.: 0145-3192222, 6060660/65 e-mail: ajmer@resonance.ac.in

Tel: 0731-4039100, 6060660 e-mail: indore@resonance.ac.in

Tel: 01572-319222, 606066 e-mail: sikar@resonance.ac.in

AGRA

Tel: 0562-3192222 e-mail: agra@resonance.ac.in

RANCHI

Tel.: 0651-6060660 e-mail: ranchi@resonance.ac.in

ALLAHABAD

Tel.: 0532-6060660 e-mail: allahabad@resonance.ac.in

Tel.: 0253-6090028 e-mail; nashik@resonance.ac.in

Td.: 0771-6060660 e-mail: raipun@resonance.ac.in

AURANGABAD

Tel.: 0240-6060660 e-mail: aurangabad@resonance.ac.in

JABALPUR

Tel.: 0761-6060660 e-mail: jabalpur@resonance.ac.in

GWALIOR

Tel.: 0751-6060660 e-mail: gwalior@resonance.ac.in

CHANDRAPUR

Tel.: 07172-6060066 e-mail: chandrapur@resonance.ac.in

Tel.: 0261-6060660 e-mail: surat@resonance.ac.in

RAJKOT

Tel.: 0281-6002011 e-mail: rajkot@resonance.ac.in

Tel.: 0265-6060660 e-mail: vadodara@resonance.ac.in

BASE STUDY CENTRES

Base Education Service Pvt. Ltd. Bengaluru (Main Branch):

Reg. Office: No.27, Next to Indian Oil Petrol Bunk, Bull Temple Road, Basavanagudi, Bengaluru- 560004 Tel. No.: 42604600/ 95381 41504

E-Mail: info@base-edu.in Website: www.base-edu.in

BANASANKARI II STAGE

Tel: 26710835/26710836

Tel: 0831-4208687 | Mobile: 9845228000

CHITRADURGA

Mobile: 9886464755, 9972413844

Tel: 0836-2252685 | Mobile: 9844118615

INDIRANAGAR

Tel: 41179342/25201306

KALYAN NAGAR

Tel: 080-25443363/25443364

KORAMANGALA

Tel: 40925512/40925534

MALIESHWARAM

Tel: 41400008

Tel: 0821-4242100 /4258100 /4243100

RAJAJINAGAR

Tel: 08023327588/41162135

SHIVAMOGGA

Tel: 08182-223980, 8884849590

TUMAKURU

Tel:0816-2252387

UDUPI

Tel: 0820-2522449, 2522994, 9986663074

VIJAYANAGAR

Tel: 23111333/23111334

YELAHANKA

Tel: 08028463922/42289643

CHIKKAMAGALURU

Mobile: 7411329369, 9448396890

Mobile: 9481392014, 9972038283

JPNAGAR Tel: 26595151/26595153

KALABURGI

Tel: 08472-230914

Mobile: 9845905200/9844510914

Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Rajasthan)- 324005 Reg. Office: J-2, Jawahar Nagar Main Road, Kota (Raj.)- 05 | Tel. No.: 0744-3192222, 3012222, 6635555 | CIN: U80302RJ2007PLC024029 To Know more: sms RESO at 56677 | E-mail: contact@resonance.ac.in | Website: www.resonance.ac.in

